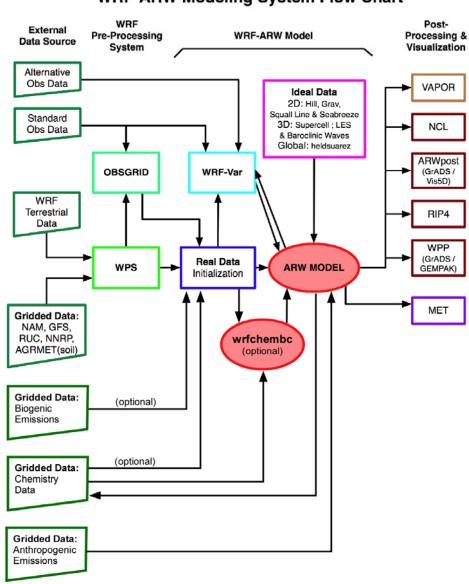

WRF/Chem: A Quick Review Of How To Set-Up & Run

Steven Peckham

WRF/Chem Model System

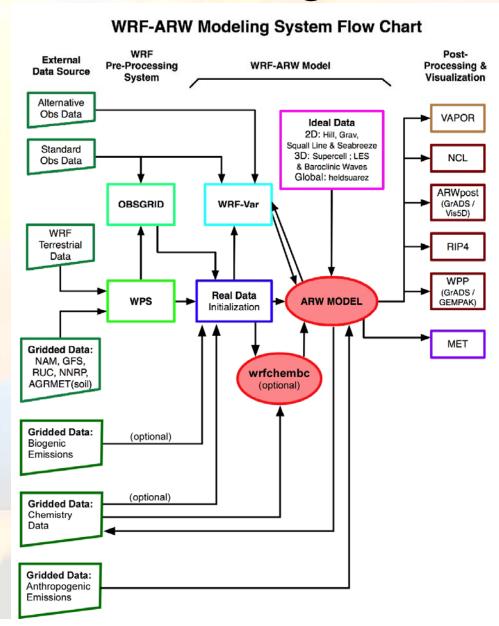
WRF/Chem


- It is assumed that the user of WRF/Chem:
 - is very familiar with the WRF model system
 - have run WPS
 - and has made more than one weather simulation using WRFV3
- The chemistry code is now available with WRF V3 from NCAR.
 - Send email to WRF/Chem help (wrfchemhelp.gsd@noaa.gov)
 - www.wrf-model.org/WG11
- Test data is available as well
 - Small domain (40x40x35 grid points, 60 km horiz. spacing)

WRF/Chem

- Compile WRF/Chem code
 - Set environmental variables
 - Define which model core to build (use ARW for now).
 - setenv WRF_EM_CORE 1
 - setenv WRF_NMM_CORE 0
 - Chemistry code is to be included in the WRF model build
 - setenv WRF_CHEM 1
 - Kinetic Pre-Processor (KPP) code (later talk by Marc Salzmann)
 - setenv WRF_KPP 1 => if KPP is to be included
 - setenv WRF KPP 0 => if KPP is NOT to be included
 - Configure and issue "compile em_real" command
 - Save compile output to file
 - check results for errors and check known problems web page if no wrf.exe

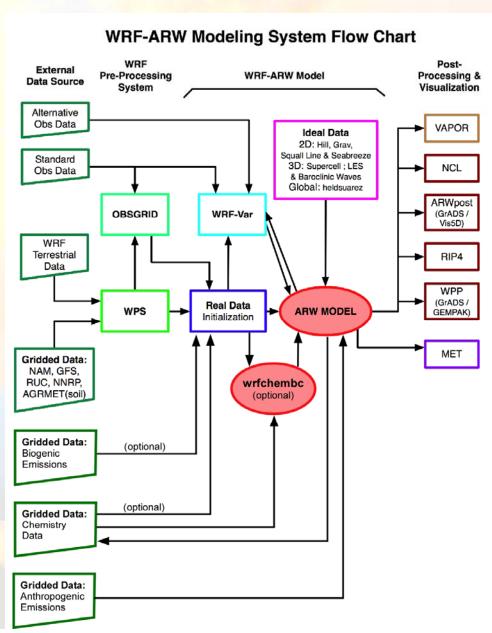
WRF/Chem Emissions


WRF-ARW Modeling System Flow Chart

WRF/Chem Emissions

- Two sources of anthropogenic emissions available:
 - NEI-99 for US;
 - RETRO (.5 degree, monthly) and EDGAR (1 degree, annual)
 - Both include programs to map to WRF grid; binary output files
- Other external emissions data
 - Start with "raw" emissions data
 - Specify the speciation for the desired chemical mechanism
 - Prepared the 3-D (or 2-D) anthropogenic emissions data set
 - Map data onto your WRF-Chem simulation domain
 - Output data
- Convert emissions data to a WRF netCDF data file
 - compile emi_conv
- Chpt. 3 and Appendix B of User's Guide for more information

WRF/Chem Biogenic Emissions

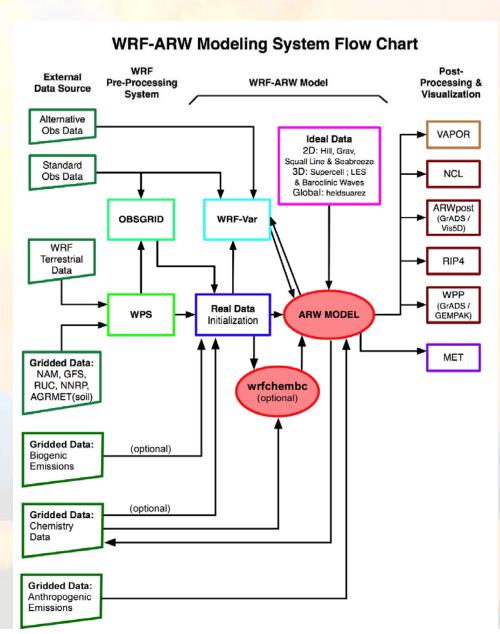

WRF/Chem Biogenic Emissions

- 4 choices for Biogenic emissions
- Option 1: No biogenic emissions (bio_emiss_opt = 0):
 - Provide biogenic emissions through anthropogenic input.
 - No additional input data files.
- Option 2 (bio_emiss_opt = 1): (best default option)
 - Landuse based emissions following Guenther et al (1993, 1994), Simpson et al. (1995). Emissions depends on both temperature and photosynthetic active radiation.
 - No additional input data files.

WRF/Chem Biogenic Emissions

- Option 3 (bio_emiss_opt = 2):
 - User specified from external data source
 - Biogenic Emissions Inventory System (BEIS) version 3.11 [*Vukovich and Pierce*, 2002] with land-use obtained from the Biogenic Emissions Landuse Database version 3 (BELD3) [*Pierce et al.*, 1998].
 - Static 2-D surface data provided in input data file and are modified according to the environment
- Option 4 (bio_emiss_opt = 3): MEGAN

WRF/Chem B.C.s


WRF/Chem Chemistry B.C.s

- Tools under development to provide global model data as BC and initial conditions
- Test program available: wrfchembc (Rainer Schmitz Univ. of Chile)
 - Available code runs with MPI-MATCH & RAQMS data
 - Adds lateral boundary data for chemical species to wrfbdy_d01
 - User specifies which chemical species to use
 - Need to choose chemical species from global model
 - Need to speciate global model data for WRF/Chem chemistry
 - Requires knowledge from user regarding chemistry (not turn-key)
- wrfinput_d01 not modified
 - Can result in differences near boundaries at start of simulation

WRF/Chem Chemistry B.C.s

- Other groups are exploring other possible ways to generate input/B.C. data for WRF/Chem
 - One program currently available
- wrfchembc methodology
 - Read global model chemistry data
 - Skip over if not a desired chemistry species
 - Determine grid point location on WRF/Chem grid
 - If at boundary, interpolate data to WRF/Chem grid
 - Once completed reading/interpolating global data:
 - Open wrfbdy_d01 data file
 - Write boundary data to wrfbdy_d01

WRF/Chem Simulation

WRF/Chem Chemical Data Input

- No chemical initial analysis derived from observations
 - There are no daily 3-D observations (with the exception of a few special occasions)

- Use forecast for initial chemical fields
 - Works well as tropospheric air quality mostly depends on emissions
 - Read in forecast data through real.exe(chem_in_opt = 1)

WRF/Chem Chemical Data Input

- Methodology
 - Set namelist option chem_in_opt = 1
 - Update dates/times of simulation in namelist.input for your forecast
 - Copy or link wrfout file to a "wrf_chem_input" data file

ln -s \$outdir/wrfout_d01_2007-06-15-12:00:00 wrf_chem_input_d01_2007-06-15-12:00:00

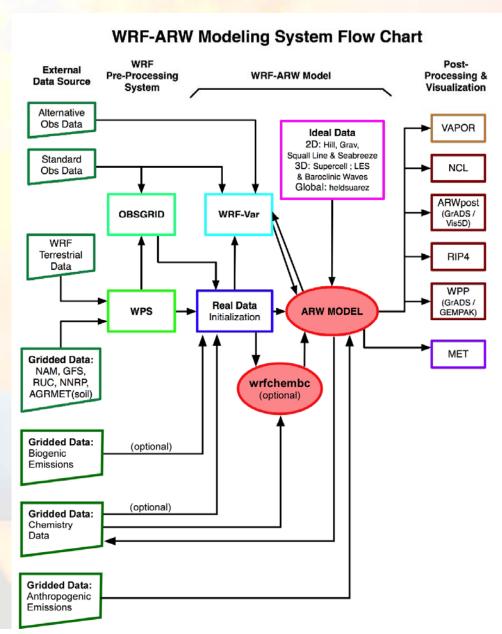
- When you run real.exe
 - A message indicates that model is being initialized with previous forecast

- Get copy of WRF/Chem code in your home directory
 cp -R /wrfhelp/SOURCE_CODE/WRFV3_CHEM/WRFV3/ WRFV3
 The code is compiled (skip section 1 in the quick start guide).
- Get WPS met data into your WRFV3/test/em_real directory
 tar -xf /wrfhelp/DATA/WRF-CHEM_WPS/met_em.d01.2008071412.tar
- Set options in namelist.input
- Run real.exe with the chemistry turned off (quick start guide #2). (Save the wrfinput_d01 data file for use later on.)
- Set the namelist.input options

• Compile and run the emiss_v03.F program (quick start #3)

```
INTEGER :: iproj = 2
REAL
         :: rekm = 6371.
REAL
         :: dx = 60.E3
REAL :: dxbigdo = 60.E3
REAL :: xlatc = 40.00
REAL :: xlonc = -115.00
REAL :: clat1 = 40.00
REAL :: clat2 = -999.
INTEGER :: inest1 = 0
REAL :: xnesstr = 1.00
REAL :: ynesstr = 1.00
INTEGER :: il = 40
INTEGER :: il = 40
INTEGER :: istart = 12
INTEGER :: maxhr = 03
```

Set vertical levels (zfa) and vertical wind profile (wind)


- Run convert_emiss.exe
 - Normally produces wrfem60k_00to12Z and wrfem60k_12to24Z binary data files.
 - Tutorial example will produce only 1 file (wrfem60k_12to24Z)

- Edit the namelist.input file to your test_em_real directory
 - Watch interval_seconds, chem_opt
- run convert_emiss.exe and verify that your wrfchemi_d01 file
 - rename to wrfchemi_12z_d01
- Edit namelist.input file in WRFV3/test/em_real to reset namelist.input and set chem_opt, etc.
- run wrf.exe and verify results.

- After running real.exe, you have:
 - wrfinput_d01 and wrfbdy file
 - Anthropogenic emissions for run domain (wrfchemi_*)
- Set the namelist.input options (may not be necessary)
- Run wrf.exe to produce wrfout data files
 - Use multi-processor compiled code
 - should get messages regarding the reading of
 - anthropogenic emissions
 - If you do not get these messages, an error is likely

- After running WRF/Chem
 - Check the text output
 - Make sure you are getting the messages you expect
 - Look for any warning/error messages
 - Check the model output (ncview)
 - Confirm that emissions data is being read into simulation
 - Error in kemit will result in no anthropogenic emissions data
 - Error in chem_opt, emiss_inpt_opt? Other namelist options?
 - Make plots of simulation results

WRF/Chem Visualization

WRF/Chem Visualization

- Your favorite netCDF data file viewer to examine results
 - ncview, ncbrowse, etc.
- Other standard WRF visualization tools work with the chemistry variables as well as the meteorology
 - ARWpost (NCL, VIS5D)
 - Grads
 - Etc.

WRF/Chem Visualization

 Now you do it! Several exercises are located under /wrfhelp/WRF-CHEM

Start with: /wrfhelp/WRF-CHEM/exercise_1/readme.txt

- Easy first one (NEI emissions only)
- 2 Build and import global emissions
- 3 full interactive physics
- 4 Registry change to output new variable
- 5 you build a new domain, init and build emissions
- Use quick start guide and User's Guide (and ask for help)

Exercise 1 hints (not directions)

Exercises located at:

/home/gurme/wrfchem_tut/exercises/tutorial_exercises_july08_updated_nov08.tar.gz or

more /home/gurme/wrfchem_tut/exercises/exercise_1/readme.txt

<tar -zxvf
/home/gurme/wrfchem_tut/exercises/tutorial_exercises_july08_updated_nov08.tar.gz>

met data at:

/home/gurme/wrfchem_tut/tutorial_data/met_data

• Execute command mpiexec –n 2 –host compute-0-6 *<filename>*

e.g., mpiexec –n 2 –host compute-0-6 convert_emiss.exe

exercise 1

- Edit the emiss_v03.F:
- POINDIR= '/home/gurme/wrfchem_tut/emissions/emissions_data/point/'
- AREADIR= '/home/gurme/wrfchem_tut/emissions/emissions_data/'
- Compile:
- mpif90 –free –convert big_endian emiss_v03.F

